Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this paper we investigate the impact of transient noise artifacts, or glitches, on gravitational- wave inference from ground-based interferometer data, and test how modeling and subtracting these glitches affects the inferred parameters. Due to their time-frequency morphology, broadband glitches cause moderate to significant biasing of posterior distributions away from true values. In contrast, narrowband glitches induce negligible biasing effects, due to distinct signal and glitch morphologies. We inject simulated binary black hole signals into data containing three occurring glitch types from past LIGO-Virgo observing runs, and reconstruct both signal and glitch waveforms using BayesWave, a wavelet-based Bayesian analysis. We apply the standard LIGO-Virgo-KAGRA deglitching pro- cedure to the detector data, which consists of subtracting from calibrated LIGO data the glitch waveform estimated by the joint BayesWave inference. We produce posterior distributions on the parameters of the injected signal before and after subtracting the glitch, and we show that removing the transient noise effectively mitigates bias from broadband glitches. This study provides a baseline validation of existing techniques, while demonstrating waveform reconstruction improvements to the Bayesian algorithm for robust astrophysical characterization in glitch-prone detector data.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract Improved observational constraints on the orbital parameters of the low-mass X-ray binary Scorpius X-1 were recently published in Killestein et al. In the process, errors were corrected in previous orbital ephemerides, which have been used in searches for continuous gravitational waves from Sco X-1 using data from the Advanced LIGO detectors. We present the results of a reanalysis of LIGO detector data from the third observing run of Advanced LIGO and Advanced Virgo using a model-based cross-correlation search. The corrected region of parameter space, which was not covered by previous searches, was about 1/3 as large as the region searched in the original O3 analysis, reducing the required computing time. We have confirmed that no detectable signal is present over a range of gravitational-wave frequencies from 25 to 1600 Hz, analogous to the null result of Abbott et al. Our search sensitivity is comparable to that of Abbott et al., who set upper limits corresponding, between 100 and 200 Hz, to an amplitudeh0of about 10−25when marginalized isotropically over the unknown inclination angle of the neutron star’s rotation axis, or less than 4 × 10−26assuming the optimal orientation.more » « less
-
null (Ed.)Abstract The merger of a binary black hole gives birth to a highly distorted final black hole. The gravitational radiation emitted as this black hole relaxes presents us with the unique opportunity to probe extreme gravity and its connection with the dynamics of the black hole horizon. Using numerical relativity simulations, we demonstrate a connection between a concrete observable feature in the gravitational waves and geometrical features on the dynamical apparent horizon of the final black hole. Specifically, we show how the line-of-sight passage of a “cusp”-like defect on the horizon of the final black hole correlates with “chirp”-like frequency peaks in the post-merger gravitational-waves. These post-merger chirps should be observed and analyzed as the sensitivity of LIGO and Virgo increase and as future generation detectors, such as LISA and the Einstein Telescope, become operational.more » « less
An official website of the United States government
